
Some slides are animated. They look quite messy unless viewed in slideshow mode.

1



I am working with cloud management systems. This is built as a multi-tier SOA 

application. This means we have many services that depend on each other which 

complicates testing.

2



3



4



Put developed classes and any libraries together into a service/link unit/executable. Test 

this in a test bed where other services are provided as a fixed installation or mocked out.

5



Test several services/executables together as a system as it will be deployed in the 

production environment.

6



Deliver your work to production.

7



8



Different environments we use to run our components/systems for the purpose of 

testing or production.

9



Test environments are complex to set up and maintain. There may be complex external 

systems such as directories, databases, payment systems, networks, security. There are 

also many services that must be provided at the correct version. Can be really difficult if 

many of these services are under development simultaneously. Some companies use 

many test environments, each with different purposes.

10



As the test environments are tricky to maintain, we want to reduce the dependency on 

them. Do this by “test in production” and more developer testing.

11



Test in production by introducing your service that uses production services to provide 

live data support. Test your service manually at first. Then let a load balancer direct 

some live traffic to the new service.

12



The service under test can also be introduced at middle-tier level.

13



14



Test one service at a time. Provide dependent services. These services may in turn 

depend on other services. This makes the test environment complex, even if the service 

under test is small.

15



16



17



18



D:\Users\Sven\DiData\code\oec-sl-adapter\trunk\oec-sladapter-

facade\src\test\java\com\dimensiondata\sciencelogic\adapter\facade\internal\SlGetDe

viceMediatorTest.java

19



Let the test harness create messages and input files. It receives messages and files, and 

may in turn provide new files and messages as response to them.

20



21



The mock client library is linked in with the service in place of the real client library. It 

allows for a back door to control its behaviour, i.e. verify calls to the library, generate 

response values or inject error conditions.

22



Serializing: Show AsrCommunicationLogWrapper

Used in MockN2AdapterEndpoint

The mock itself MockAsrFacade

23



We prefer stateless applications. These are much easier to test.

24



25



26



Reset DB: AbstractApi2FuncTestBase.resetDatabase()

27



See ServerRestApi2FuncTest

deployServerRequest()

sendDeployServerCompletedMessage()

28



29



Example bank transactions. A transaction may require several steps for example 

customer verification. 

Split a scenario into sub-scenarios, each starting with a single input stimuli. Test the 

actions from the system under test.

30



31


