Mock Objects
N
Functional Testing

Sven Rosvall

dimension /Lﬁ
data AA

Some slides are animated. They look quite messy unless viewed in slideshow mode.

Dimension Data ‘
Cloud Business Unit AA

dimension
data

8InRelIyosY uone Baul
Buvopuow
B wowebeuep 'AuNdes 'sod E|

Presentation |—|—|—r—|—!: [
]
#é\@?

1 1
Enterprise
Components
Project or Enterprise

;

:

ocsmn 1

Qperaioa . @ |E::: Buses
Object-orient

I am working with cloud management systems. This is built as a multi-tier SOA
application. This means we have many services that depend on each other which
complicates testing.

Testing Lifecycle

Unit Testing

Tooks Help
OH P-NO il % A0 49 B @
M sofEgre™ =0 =B
"MC:‘“’ i Test Coss | © Executions |] Executon R (8] Observation |) Coda Caver |) Exceptions | % Memary Lea |25 Developers | Probens & Console| =
Source Fies (Faled-120, ¢ Dddxa
é'; ‘“”"‘"“:’:“m & Developer/Source Class Status | Cade Coverage Exception Faled Test Classes_ Foded Test Cases
com,appperfect S A Manoj Dhoble:
g mm.m:«tw @ com.apppertect petstene creste, customes CheckForm [100% (18/18) 2 100% (1/1) 33% (2/6)
oxiapmatecpols, @ com.soppemtect petstore creste customer. Constants P owewan o we o) o
@ com.appperect.petstore create.customer CresteAction P 8% (4/62) 1 100% (1/1) 100%1/1)
@ com.appperfect. petstore.create. customes. CreateCheckaction F 55% (12/22) i 100% (1/1) 100%(1/1)
0O « " w 19% (3/16) 1 100% (1/1) 100%(1/1)
A5 redtCardinfe B 100%(18/18) 0 0% (0]1) 0% (0}9)
@ com.appperfect petstore create, customes Customer P 100% (5/5) 1 100% (1/1) 0% (112)
@ com.appperbect petstore create. customer CustomerForm P 100% (121j121) 17 100% (171} 7% (7]36)
@ A seomerinfs P 100% (8%8) 0 0% (0f1) 0% (0)19)
<] et stocnertist P % (1824} 0 0% (0f1) o (0fS)
<] ustomes.C P 100% (85/85) 20 100% (1/1) 9% (20]41)
@ com.appperhect. petstore. create. customer ERACtion m 6% [4/65) 1 100% (1/1) 100%(1/1)
© com.appperfect. petstaore. craate. customes EdtForm P 100% (120/120) 16 100% (111 42% (16738
o apppesfect, petstors F 100% (22) i 100% (/1) 100%(1/1)
@ com.appperfect. petstore. creake. customes Logn P 100% (6/6) L} 0% (071) 0% (0/3)
@ com.appperbect.petstore. craske. customer. LoginForm P 8% (22)25) 4 100% (1/1) 0% (4)8)
(] Lognvarisble P 100% (8/8) o % (0/1) 0% (0j4)
@ com.apppertect petstore create. customer Nods P 100% C1E16) 1 100% (1) 1% (1f7)
@ com.appperbect petstore create. customer Personallnd P osewmpsss 19 100% (171) 95% (19/20)
@ + petstone E 100% (2528) 0 % (of1) 0% (010
e [o 100% (242} 1 100% (111 100%(1/1)
(<] ShippingForm P il 151/151) 19 100% (1/1) 48% (19/40)
@ com.appperfect. petstore petstorage pR.Data [o 100% (4717 0 % (041) 0% (079)
@ com.appperfect petstors petstorage ok Node P 100% (S/5) 0 % (/1) 0% (071)
@ com.apppestect.petstore petstorage.pi.pet Tres. P % (223 1 100% (1/1) 14% (17}
@ com.apppertect,petstore patstorags.pt tree P 9% (34/116) 8 100% (1f1) 57% (8/14)
@ com.appperfect petstore. shopping Nods. I 100%(1717) 1 100% (1/1) 1% (%)
@ com.appperhect.petstore.shopping, ShappingList P s s 100% (171} 31% (si1e)
< >
Professional Test Conpléted Ape 26, 2009 2:24 PH gomet im| @

Functional Testing

Put developed classes and any libraries together into a service/link unit/executable. Test
this in a test bed where other services are provided as a fixed installation or mocked out.

System Testing

&

Test several services/executables together as a system as it will be deployed in the
production environment.

Production

Deliver your work to production.

Test Responsibilities

?‘omm\

Test Environments

Different environments we use to run our components/systems for the purpose of
testing or production.

Test Environment

Test environments are complex to set up and maintain. There may be complex external
systems such as directories, databases, payment systems, networks, security. There are
also many services that must be provided at the correct version. Can be really difficult if
many of these services are under development simultaneously. Some companies use
many test environments, each with different purposes.

10

Test Environments

As the test environments are tricky to maintain, we want to reduce the dependency on
them. Do this by “test in production” and more developer testing.

11

Test in Production

Test in production by introducing your service that uses production services to provide
live data support. Test your service manually at first. Then let a load balancer direct
some live traffic to the new service.

12

Test in Production

The service under test can also be introduced at middle-tier level.

13

Test Environments

14

Functional Testing

Test one service at a time. Provide dependent services. These services may in turn
depend on other services. This makes the test environment complex, even if the service
under test is small.

15

Mocking Dependent Services

Goals:

* Mimic required functionality for testing
* Easy to maintain and to deploy

* Verify requests

* Control expected responses

* Remove indirect dependencies

16

Modes of communication

* Synchronous Requests

* Asynchronous Messages

* Files

* Shared memory

* Database updates and triggers

17

Mocking an HTTP service

Simple mock HTTP service

—_—
_’ @ —
Service

Embedded HTTP service within test program

Service

18

WireMock

@Rule

public WireMockRule wireMockRule = new WireMockRule (PORT) ;

String responsePayload = fromFile ("GetDeviceResponse ok.json");

stubFor(get (urlEqualTo("/api/device?limit=100"

+ "&filter.component unique id=" + vmRefId

+ "&filter.component root device=" + vcenterDID))
.withHeader ("Authorization", equalTo("Basic "

+ new String(basicAuth, Charset.forName ("UTF-8"))))
.willReturn (aResponse()

.withHeader ("Content-Type", "application/json")

.withStatus (HttpStatus.SC OK)

.withBody (responsePayload)));

D:\Users\Sven\DiData\code\oec-sl-adapter\trunk\oec-sladapter-
facade\src\test\java\com\dimensiondata\sciencelogic\adapter\facade\internal\SIGetDe
viceMediatorTest.java

Asynchronous Communication

ollllllle ollllllie

ollilile

Let the test harness create messages and input files. It receives messages and files, and
may in turn provide new files and messages as response to them.

20

Proprietary Communication

* Protocol is hidden in a client library.
* Protocol is verbose and complex.

21

Solution: Mock Client Library

P

Test
Harness

The mock client library is linked in with the service in place of the real client library. It
allows for a back door to control its behaviour, i.e. verify calls to the library, generate
response values or inject error conditions.

22

Mock Client Library

* Use a back door connection for:
* Response data
* Inspecting request data
* Control exceptions

* Backdoor runs in its own thread.
* May require care when serializing data.

* Use same technology as is used for the service’s
inputs.

Serializing: Show AsrCommunicationLogWrapper
Used in MockN2AdapterEndpoint
The mock itself MockAsrFacade

23

Application state

Stateless

State kept in some dependent
service.

No need to set up state
before each test case.

Run test cases in any order.

Stateful

State kept in application.

Run application functionality
to set state correctly for each
test.

or ...
Run tests in specific order to

use state set in previous tests.

We prefer stateless applications. These are much easier to test.

24

Database Usage

» Database stores state.

* Database as part of the application?
* Resetting content between tests.

* Mocking Database Access Layer

25

Database and Application

“Database is a part of the
application”

ORM make database schema
tightly coupled to the
application.

Don’t let schema bleed into
the test code.

“Database is a dependent
service”

Database developed
independently of application
internal structures.

Test code is allowed full
access to database

26

Database Preparation

May contain lots of static data.
* Recreate schema and data
* Recreate data only
* Roll-back data changed during test

* Prepare test specific data
* Tests that don’t update database

* Use a golden image of database for quick start.

Reset DB: AbstractApi2FuncTestBase.resetDatabase()

27

Inputs and outputs

* For a stateless service

* |dentify input stimuli and the side effects they
cause.

* Split each scenario to include one stimulus only.

See ServerRestApi2FuncTest
deployServerRequest()
sendDeployServerCompletedMessage()

28

Input Stimuli

* HTTP requests

* Messages

* Database triggers
* File creation

29

Minimize test scenario scopes

| Client ‘ ‘ Systam Under Test | | Dependency 1 I ’ Dependency 2 ‘

|
|
|

— — | — — = —_— —_—
I
|
|
|

Example bank transactions. A transaction may require several steps for example
customer verification.

Split a scenario into sub-scenarios, each starting with a single input stimuli. Test the
actions from the system under test.

30

31

